When it relates to purchasing a pool, many people must decide whether they would like an in-ground pool or an above ground pool. While both types of pools are popular, many people would opt for to have an in-ground pool. The only problem with in-ground pools is that they are regularly costly to afford. That signifies that if you’re the owner of an in-ground pool, it is probable that you would want to have the most out of your investment. This can be achieved by equipping your pool with popular pool accessories.When it relates to pool accessories, there are a broad variety of different items that are viewed accessories. These things earn the name accessory because they are not included with the acquire of a pool; therefore, they has to be purchased on an individual basis.
Irrespective of the fact that pool accessories require spending extra money, it is likely that you will like having them. The reason for this is there are literally an unlimited number of accessories to select from. With a selection so wide, you are likely to find precisely what you would like or need.

The pool cleaners are becoming quite popular these days. In fact, they are considered as one of the best available suction side pool cleaners. They can conveniently clean the bottom as well as the sides of your pool and keep them free from any kind of debris and dirt. Like any other pool accessories, the Kreepy Krauly parts need maintenance for working efficiently for a longer period of time.The following are some tips that will help you to fix most of the common problems of this type of cleaners:In case, the cleaner gets stuck on the main drain you will need to check whether or not the valve is closed. Since this device collects all the dirt particles from the bottom of your pool, it is common that some of its parts may get fully or mostly closed. To solve this problem, simply clean the valve and reattach it to the cleaner.At times the main pool filter becomes dirty. To make sure that the filter is clean you will need to check it on a regular basis. This is essential for providing enough suction for your device. This problem is very common and can be easily dealt with.When the water level of your swimming pool is too low, the Kreepy Krauly will not function properly. Since there is no water to pull from your pool, the pool pump will stop working. This, in turn, will not provide any kind of suction for the device to work from. Thus, make sure that your pool has the correct water level so that the parts of the cleaner can work effectively.Another common problem occurs when the pump basket gets clogged with dirt particles. In such situations, the pool pump cannot to pull water and also fails to provide suction. Such debris can also get stuck at the bottom of the cleaner. This often happens while cleaning large debris and pebbles. At times, pool toys can also get stuck and cause similar problem. This restricts the water flow as well as the movement of the flapper. In case of such obstruction, turn off the pool pump and clean the device immediately.The hose of Kreepy Krauly, like any other cleaning device, is vulnerable to leakage. This is more common with old hose sections or with those which has a crack. Needless to say, that in such situations the cleaner will not work properly. Thereby, you need to check these parts regularly to ensure that they are in good condition and are not causing any air leakage.

Swimming pool sanitation is the process of ensuring healthy conditions in swimming pools. Proper sanitation is needed to maintain the visual clarity of water and to prevent the transmission of infectious waterborne diseases. Two distinct and separate methods are employed in the sanitation of a swimming pool. The consecutive dilution system to allow the removal of organic waste on a daily basis by using the sieve baskets inside the skimmer and circulation pump and the sand unit with a backwash facility for easy removal of organic waste from the water circulation. Disinfection normally in the form of Hypochlorous acid (HClO) to kill infectious microorganisms. Alongside these two distinct measures within the pool owners jurisdiction, swimmer hygiene and cleanliness helps reduce organic waste build up. The World Health Organization has published international guidelines for the safety of swimming pools and similar recreational-water environments, including standards for minimizing microbial and chemical hazards.[1] The United States Centers for Disease Control and Prevention also provides information on pool sanitation and water related illnesses for health professionals and the public.[2] The main organizations providing certifications for pool and spa operators and technicians are the National Swimming Pool Foundation and Association of Pool & Spa Professionals. The certifications are accepted by many state and local health departments.[3] Swimming pool contaminants are introduced from environmental sources and swimmers. Affecting primarily outdoor swimming pools, environmental contaminants include windblown dirt and debris, incoming water from unsanitary sources, rain containing microscopic algae spores and droppings from birds possibly harbouring disease-causing pathogens.[4] Indoor pools are less susceptible to environmental contaminants. Contaminants introduced by swimmers can dramatically influence the operation of indoor and outdoor swimming pools. Sources include micro-organisms from infected swimmers and body oils including sweat, cosmetics, suntan lotion, urine, saliva and fecal matter; for example, it was estimated by researchers that swimming pools contain, on average, 30 to 80 mL of urine for each person that uses the pool.[5] In addition, the interaction between disinfectants and pool water contaminants can produce a mixture of chloramines and other disinfection by-products. The journal Environmental Science & Technology reported that sweat and urine react with chlorine and produce trichloramine and cyanogen chloride, two chemicals dangerous to human health. [1] Nitrosamines are another type of the disinfection by-products that are of concern as a potential health hazard.[6]Acesulfame potassium is widely used in the human diet and excreted by the kidneys. It has been used by researchers as a marker to estimate to what degree swimming pools are contaminated by urine.[6] It was estimated that a commercial-size swimming pool of 220,000 gallons would contain about 20 gallons of urine, equivalent to about 2 gallons of urine in a typical residential pool.[6]Pathogenic contaminants are of greatest concern in swimming pools as they have been associated with numerous recreational water illnesses (RWIs).[7] Public health pathogens can be present in swimming pools as viruses, bacteria, protozoa and fungi. Diarrhea is the most commonly reported illness associated with pathogenic contaminants, while other diseases associated with untreated pools are Cryptosporidiosis and Giardiasis.[8][9] Other illnesses commonly occurring in poorly maintained swimming pools include otitis externa, commonly called swimmers ear, skin rashes and respiratory infections. Contamination can be minimized by good swimmer hygiene practices such as showering before and after swimming, and not letting children with intestinal disorders swim. Effective treatments are needed to address contaminants in pool water because preventing the introduction of pool contaminants, pathogenic and non-pathogenic, into swimming pools is impossible. A well-maintained, properly operating pool filtration and re-circulation system is the first barrier in combating contaminants large enough to be filtered. Rapid removal of filterable contaminants reduces the impact on the disinfection system thereby limiting the formation of chloramines, restricting the formation of disinfection by-products and optimizing sanitation effectiveness. To kill pathogens and help prevent recreational water illnesses, pool operators must maintain proper levels of chlorine or another sanitizer.[10][11]Over time, calcium from municipal water tends to accumulate, developing salt deposits in the swimming pool walls and equipment (filters, pumps), reducing their effectiveness. Therefore, it is advised to either completely drain the pool, and refill it with fresh water, or recycle the existing pool water, using reverse osmosis. The advantage of the latter method is that 90% of the water can be reused. Pool operators must also store and handle cleaning and sanitation chemicals safely. Disease prevention should be the top priority for every water quality management program for pool and spa operators. Disinfection is critical to protect against pathogens, and is best managed through routine monitoring and maintenance of chemical feed equipment to ensure optimum chemical levels in accordance with state and local regulations.[12]Modern digital equipment when used in conjunction with automatic chemical feeders results in stable pH and chlorine levels. Local jurisdiction may demand a wait time if chemicals are added by hand to the water so that swimmers are not injured. Chemical parameters include disinfectant levels according to regulated pesticide label directions. pH should be kept between 7.2-7.8. Human tears have a pH of 7.4, making this an ideal point to set a pool.[13] More often than not, it is improper pH and not the sanitiser that is responsible for irritating swimmers' skin and eyes. Total alkalinity should be 80-120 ppm and calcium hardness between 200 – 400 ppm.[14]Good hygienic behavior at swimming pools is also important for reducing health risk factors at swimming pools and spas. Showering before swimming can reduce introduction of contaminants to the pool, and showering again after swimming will help to remove any that way have been picked up by the swimmer. Those with diarrhea or other gastroenteritis illnesses should not swim within 2 weeks of an outbreak, especially children. Cryptosporidium is chlorine resistant.[15]To minimize exposure to pathogens, swimmers should avoid getting water into their mouths and never swallow pool or spa water.[16] Maintaining an effective concentration of disinfectant is critically important in assuring the safety and health of swimming pool and spa users. When any of these pool chemicals are used, it is very important to keep the pH of the pool in the range 7.2 to 7.8-according to the Langelier Saturation Index, or 7.8 to 8.2- according to the Hamilton Index; higher pH drastically reduces the sanitizing power of the chlorine due to reduced oxidation-reduction potential (ORP), while lower pH causes bather discomfort, especially to the eyes. However, according to the Hamilton Index, a higher pH can reduce unnecessary chlorine consumption while still remaining effective at preventing algae and bacteria growth. To help ensure the health of bathers and protect pool equipment, it is essential to perform routine monitoring of water quality factors (or "parameters") on a regular basis. This process becomes the essence of an optimum water quality management program. Conventional halogen-based oxidizers such as chlorine and bromine are convenient and economical primary sanitizers for swimming pools and provide a residual level of sanitizer that remains in the water. Chlorine-releasing compounds are the most popular and frequently used in swimming pools whereas bromine-releasing compounds have found heightened popularity in spas and hot tubs. Both are members of the halogen group with demonstrated ability to destroy and deactivate a wide range of potentially dangerous bacteria and viruses in swimming pools and spas. Both exhibit three essential elements as ideal first-line-of-defense sanitizers for swimming pools and spas: they are fast-acting and enduring, they are effective algaecides, and they oxidize undesired contaminants. Swimming pools can be disinfected with a variety of chlorine-releasing compounds. The most basic of these compounds is molecular chlorine (Cl2); however, its application is primarily in large commercial public swimming pools. Inorganic forms of chlorine-releasing compounds frequently used in residential and public swimming pools include sodium hypochlorite commonly known as liquid bleach or simply bleach, calcium hypochlorite and lithium hypochlorite. Chlorine residuals from Cl2 and inorganic chlorine-releasing compounds break down rapidly in sunlight. To extend their disinfectant usefulness and persistence in outdoor settings, swimming pools treated with one or more of the inorganic forms of chlorine-releasing compounds can be supplemented with cyanuric acid—a granular stabilizing agent capable of extending the active chlorine residual half-life (t½) by four to sixfold.[17] Chlorinated isocyanurates, a family of organic chlorine-releasing compounds, are stabilized to prevent UV degradation due to the presence of cyanurate as part of their chemical backbone. Chlorine reacting with urea in urine and other nitrogen-containing wastes from bathers can produce chloramines. Chloramines typically occur when an insufficient amount of chlorine is used to disinfect a contaminated pool. Chloramines are generally responsible for the noxious, irritating smell prominently occurring in indoor pool settings. A common way to remove chloramines is to "superchlorinate" (commonly called "shocking") the pool with a high dose of inorganic chlorine sufficient to deliver 10 ppm chlorine. Regular superchlorination (every two weeks in summer) helps to eliminate these unpleasant odors in the pool. Levels of chloramines and other volatile compounds in water can be minimized by reducing contaminants that lead to their formation (e.g., urea, creatinine, amino acids and personal care products) as well as by use of non-chlorine "shock oxidizers" such as potassium peroxymonosulfate. Medium pressure UV technology is used to control the level of chloramines in indoor pools. It is also used as a secondary form of disinfection to address chlorine tolerant pathogens. A properly sized and maintained UV system should remove the need to shock for chloramines, although shocking would still be used to address a fecal accident in the pool. UV will not replace chlorine, but is used to control the level of chloramines, which are responsible for the odor, irritation, and enhanced corrosion at an indoor pool. Copper ion systems use a low voltage current across copper bars (solid copper, or a mixture of copper and zinc or silver) to free copper ions into the flow of pool water to kill organisms such as algae in the water and provide a "residual" in the water. Alternative systems also use titanium plates to produce oxygen in the water to help degrade organic compounds. An electrically operated water pump is the prime motivator in recirculating the water from the pool. Water is forced through a filter and then returned to the pool. Using a water pump by itself is often not sufficient to completely sanitize a pool. Commercial and public pool pumps usually run 24 hours a day for the entire operating season of the pool. Residential pool pumps are typical run for 4 hours per day in winter (when the pool is not in use) and up to 24 hours in summer. To save electricity costs, most pools run water pumps for between 6 hours and 12 hours in summer with the pump being controlled by an electronic timer. Most pool pumps available today incorporate a small filter basket as the last effort to avoid leaf or hair contamination reaching the close-tolerance impeller section of the pump. A pressure-fed sand filter is typically placed in line immediately after the water pump. The filter typically contains a medium such as graded sand (called '14/24 Filter Media' in the UK system of grading the size of sand by sifting through a fine brass-wire mesh of 14 to the inch (5.5 per centimeter) to 24 to the inch (9.5 per cm)). A pressure fed sand filter is termed a 'High Rate' sand filter, and will generally filter turbid water of particulates no less than 10 micrometers in size.[18] The rapid sand filter type are periodically 'back washed' as contaminants reduce water flow and increase back pressure. Indicated by a pressure gauge on the pressure side of the filter reaching into the 'red line' area, the pool owner is alerted to the need to 'backwash' the unit. The sand in the filter will typically last five to seven years before all the "rough edges" are worn off and the more tightly packed sand no longer works as intended. Recommended filtration for public/commercial pools are 1 ton sand per 100,000 liters water (10 ounces avdp. per cubic foot of water) [7.48 US or 6.23 UK gallons]. Introduced in the early 1900s was another type of sand filter; the 'Rapid Sand' filter, whereby water was pumped into the top of a large volume tank (3' 0" or more cube) (1 cubic yard/200US gal/170UK gal/770 liters) containing filter grade sand, and returning to the pool through a pipe at the bottom of the tank. As there is no pressure inside this tank, they were also known as 'gravity filters'. These type of filters are not greatly effective, and are no longer common in home swimming pools, being replaced by the pressure-fed type filter. Some filters use diatomaceous earth to help filter out contaminants. Commonly referred to as 'D.E.' filters, they exhibit superior filtration capabilities.[19] Often a D.E. filter will trap waterborne contaminants as small as 1 micrometer in size. D.E. filters are banned in some states, as they must be emptied out periodically and the contaminated media flushed down the sewer, causing a problem in some districts' sewage systems. Other filter media that have been introduced to the residential swimming pool market since 1970 include sand particles and paper type cartridge filters of 50 to 150 square feet (14 m2) filter area arranged in a tightly packed 12" diameter x 24" long (300 mm x 600 mm) accordion-like circular cartridge. These units can be 'daisy-chained' together to collectively filter almost any size home pool. The cartridges are typically cleaned by removal from the filter body and hosing-off down a sewer connection. They are popular where backwashed water from a sand filter is not allowed to be discharged or goes into the aquifer. Automated pool cleaner Automated pool cleaners more commonly known as "Automatic pool cleaners" and in particular electric, robotic pool cleaners provide an extra measure of filtration, and in fact like the handheld vacuums can microfilter a pool, which a sand filter without flocculation or coagulalents is unable to accomplish [20]These cleaners are independent from the pool's main filter and pump system and are powered by a separate electricity source, usually in the form of a set-down transformer that is kept at least 10 feet (3.0 m) from the water in the pool, often on the pool deck. They have two internal motors: one to suck in water through a self-contained filter bag and then return the filtered water at a high rate of speed back into the pool water. The second is a drive motor that is connected to tractor-like rubber or synthetic tracks and "brushes" connected by rubber or plastic bands via a metal shaft. The brushes, resembling paint rollers, are located on the front and back of the machine and help remove contaminating particles from the pool's floor, walls (and in some designs even the pool steps) depending on size and configuration. They also direct the particles into the internal filter bag.[21][22] Saline chlorination units, electronic oxidation systems, ionization systems, microbe disinfection with ultra-violet lamp systems, and "Tri-Chlor Feeders" are other independent or auxiliary systems for swimming pool sanitation. A consecutive dilution system is arranged to consecutively remove organic waste that has been skimmed from the surface of the water. The surface water is pulled through the skimmer mouth where large organic waste is trapped inside the skimmer basket sieve. Each sieve basket reduces in mesh size to dilute the size of the contaminant as it passes through the consecutive dilution system. Dilution defines as the action of making something weaker in force, content, or value. The second consecutive sieve basket is attached to the circulation pump. Here the 25% of water drawn from the main drain at the bottom of the swimming pool meets the 75% of water drawn from the surface of the water. The circulation pumps sieve basket is easily accessible by the pool owner to be emptied daily. The third consecutive sieve is the sand unit. Here smaller organic waste that has slipped through the previous consecutive sieves is trapped by the sand. If not removed regularly the organic waste will continue to rot down and leech into the water. Through this dilution process it allows the organic waste to be easily removed via the sieve baskets and ultimately to be back washed to remove smaller organic waste trapped in the sand sieve to stop it leeching ammonia and other compounds into the recirculated water causing (DBP's). The sieve baskets are easily removed daily for cleaning as is the sand unit which should be back washed at least once a week. With a perfectly maintained consecutive dilution system the build up of Chloramines and other disinfection bye products(DBP's) can be drastically reduced. The water returned to the pool should have been sieved of all organic waste above 10 microns. Water is typically drawn from the pool via a rectangular aperture in the wall, connected through to a device fitted into one (or more) wall/s of the pool. The internals of the skimmer are accessed from the pool deck through a circular or rectangle lid, about one foot in diameter. If the pool's water pump is operational water is drawn from the pool over a floating hinged weir (operating from a vertical position to 90 degrees angle away from the pool, in order to stop leaves and debris being back-flooded into the pool by wave action), and down into a removable "skimmer basket", the purpose of which is to entrap leaves, dead insects and other larger floating debris. The aperture visible from the pool side is typically 1' 0" (300 mm) wide by 6" (150 mm) high, which intersects the water midway though the center of the aperture. Skimmers with apertures wider than this are termed "wide angle" skimmers and may be as much as 2' 0" wide (600 mm). Floating skimmers have the advantage of not being affected by the level of the water as these are adjusted to work with the rate of pump suction and will retain optimum skimming regardless of water level leading to a markedly reduced amount of bio-material in the water. Skimmers should always have a leaf basket or filter between it and the pump to avoid blockages in the pipes leading to the pump and filter. The water returning to the pool from the consecutive dilution system is passed through return jets below the surface of the water. The return jets are designed to impact a turbulent flow as the water enters the pool. This turbulent flow as a force is far less than the mass of the water in the pool and the turbulent flow takes the least pressure route to the surface where surface tension reforms it into a laminar flow on the surface water. As the returned water disturbs the water surface it creates a capillary wave. The capillary wave if the return jets are positioned correctly creates a circular motion within the surface tension of the water allowing the surface water to slowly circulate around the pool walls. Organic waste floating on the surface through this circulation from the capillary wave is slowly drawn passed the mouth of the skimmer where it is pulled in due to the laminar flow and surface tension over the skimmer weir. In a well designed pool this circulation caused by the disturbed returned water aids in removing organic waste from the pools surface to be trapped inside the consecutive dilution system for easy disposal. Many return jets are equipped with a swivel nozzle which if used correctly will further induce a circulation in the depths of the water further cleaning the pool. When the jet nozzles are turned to one direction e.g. both to the right an anti clockwise rotation within the whole depth of pool water will exist. If turned to the left it will create a clockwise movement within the depths of the water. This rotation has the benefit of cleaning the bottom of the pool and slowly moving sunken inorganic debris to the main drain where the debris is removed by the circulation pump basket sieve. In a correctly constructed pool this rotation of the water caused by the return water from the consecutive dilution system will reduce or even remove the need to hoover the bottom of the pool. To gain the maximum rotation force on the main body of water the consecutive dilution system needs to be as clean and unblocked as possible to allow maximum flow pressure from the pump. As the water rotates it also disturbs organic waste in the lower water layers and forces it to the top of the pool water. This rotational force the pool return jets create is the most important part of cleaning the pool water and pushing organic waste across the mouth of the skimmer. With a correctly designed and operated swimming pool this circulation can be seen and after a period of time the circulation will reach even the deep end and impart a low velocity vortex above the main drain due to suction. Correct use of the return jets is the most effective way of removing disinfection bye products caused by decomposing organic waste from the water depths and pulling it into the consecutive dilution system for immediate disposal. Other equipment which may be optioned in the recirculation system include pool water heaters. They can be heat pumps, natural gas or propane gas heaters, electric heaters, wood burning heaters, or Solar hot water panel heaters - increasingly used in the sustainable design of pools. Diversions to electronic oxidation systems, ionization systems, microbe disinfectinon with ultra-violet lamp systems, and "Tri-Chlor Feeders" are other auxiliary systems for Swimming pool sanitation; as well as solar panels; are in most cases required to be placed after the filtration equipment, and are the last items before the water is returned to the pool. Features that are part of the water circulation system can extend treatment capacity needs for sizing calculations and can include: artificial streams and waterfalls, in-pool fountains, integrated hot tubs and spas, water slides and sluices, artificial "pebble beaches", submerged seating as bench-ledges or as "stools" at in-pool bars, plunge pools, and shallow children's wading pools.